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ABSTRACT
In this paper, we perform a systematic design study of the “ele-

phant in the room” facing the VR industry – is it feasible to enable
high-quality VR apps on untethered mobile devices such as smart-
phones? Our quantitative, performance-driven design study makes
two contributions. First, we show that the QoE achievable for high-
quality VR applications on today’s mobile hardware and wireless
networks via local rendering or offloading is about 10X away from
the acceptable QoE, yet waiting for future mobile hardware or
next-generation wireless networks (e.g., 5G) is unlikely to help,
because of power limitation and the higher CPU utilization needed
for processing packets under higher data rate.

Second, we present Furion, a VR framework that enables high-
quality, immersive mobile VR on today’s mobile devices and wire-
less networks. Furion exploits a key insight about the VR workload
that foreground interactions and background environment have
contrasting predictability and rendering workload, and employs
a split renderer architecture running on both the phone and the
server. Supplemented with video compression, use of panoramic
frames, and parallel decoding on multiple cores on the phone, we
demonstrate Furion can support high-quality VR apps on today’s
smartphones over WiFi, with under 14ms latency and 60 FPS (the
phone display refresh rate).
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1 INTRODUCTION
The consumer virtual reality (VR) revolution started around 2012

when Palmer Luckey launched the now legendary Kickstarter cam-
paign for Oculus Rift, which was acquired by Facebook in 2014.
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Since then, VR systems have been gaining growing market pene-
tration, and are estimated to generate $30 billion annual revenue
by 2020 [24].

Despite the growing market penetration, today’s high-end VR
systems such as Oculus Rift [16] and HTC Vive [9] that offer high
quality and accurate positional tracking and handheld controllers
remain tethered, where high-quality frames are rendered on a pow-
erful server and streamed to the headset via a multi-Gbps HDMI
cable. The cable not only limits users’ mobility and hence VR ex-
perience but also creates a safety hazard as the user may trip and
fall.

In this work, we perform a systematic design study to tackle
this “elephant in the room” facing the VR industry – is it feasible
to enable high-quality VR apps on untethered mobile devices such as
smartphones?

We carry out our study in three steps. First, we profile the per-
formance of two extreme design points on the latest Pixel phone
which was dubbed by Google as “VR ready” [5], local rendering
which performs rendering entirely on the phone, and remote ren-
dering which renders frames entirely on a server and streams them
over the best wireless network available on today’s commodity
smartphones, 802.11ac.

Our profiling study shows that the QoE achievable for high-
quality VR apps on today’s high-end mobile hardware (Pixel) and
wireless networks (802.11ac) is about 10X away from the acceptable
QoE. In particular, rendering a frame in a high-quality VR app on
Pixel takes about 63-111ms and exhausts the phone CPU and GPU
with utilization at about 60% and 100%, while on-demand streaming
a frame rendered at the server over 802.11ac takes about 230ms.

Second, given neither local rendering nor remote rendering can
support untethered VR on today’s mobile hardware and wireless
networks, we ask the question – will waiting for tomorrow’s mobile
hardware and next-generation wireless networks help?

Through analyzing the technology trend of mobile hardware
and wireless networks we show that waiting for future mobile
hardware or next-generation wireless networks (e.g., 5G, 802.11ad)
is unlikely to help. First, the CPU/GPU of mobile handsets will not
grow significantly more powerful because of the power constraint.
In fact, the technology trend shows the CPU capability of high-
end phones has largely converged to using quad-cores at 2-2.5
GHz, with aggressive temperature control and hence frequency
capping. Second, the multi-Gbps bandwidth promised by the next
generation of wireless networks will not make remote rendering
readily feasible, because packet processing at 10X higher data rate
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will far exceed the mobile CPU capability, which as just discussed
is unlikely to improve significantly. We show packet processing
of 4 Gbps TCP flows would require 16 equivalent cores on Pixel
running at the capped frequency.

The above observation and reasoning suggest that the likely path
to support untethered high-quality VR, i.e.,meeting its QoE require-
ments, is via software innovation. Furthermore, if such a software
solution exists, following the same reasoning above, it should work
on today’s mobile hardware and wireless networks. In the third step
of our study, we develop such a software solution, called Furion.
Furion is a VR framework that enables high-quality, immersive
mobile VR on today’s mobile device and wireless networks.

The first thing Furion exploits is the classic technique for trading
off computation time for reduced network transfer time: compres-
sion. However, we show directly applying the video compression
scheme H.264 to compress the on-demand rendered frames on the
server requires 32ms to get the frame and 16ms to decode it on
the phone, for a total of 48ms end-to-end delay, which is about 3X
beyond the 16ms per-frame interval on a 60 FPS display.

To bridge this 3X gap, the Furion design exploits several key
insights about the VR workload: (1) a frame in high-quality VR apps
consists of foreground interactions and background environment,
(2) background environment is fairly predictable as it is incremen-
tally updated as the user moves around in the virtual world, but
has a much heavier rendering load due to rich details and com-
plex textures, and hence is ideally suited for pre-rendering on and
prefetching from the server, (3) foreground interactions are much
lighter weight but unpredictable and hence are suited for rendering
on the phone.

Motivated by the above insight, Furion employs a cooperative
renderer architecture that renders less predictable, lighter-load inter-
actions on the phone to avoid network latency delay while prefetch-
ing pre-rendered environment frames viewed from adjacent loca-
tions in the virtual world during the time it takes the user to walk
to the adjacent location to hide network transfer delay.

While the cooperative renderer architecture is necessary to re-
duce end-to-end frame rendering time to under 16ms, making it to
work requires solving a few remaining engineering challenges: (1)
At a location in the virtual world, the user may still change orien-
tation abruptly. How to render a new environment corresponding
to any orientation without fetching new frames from the server
on-demand? (2) How to prefetch the needed pre-rendered environ-
ment frames from the server just in time to be used for the next
frame?

To tackle the first challenge, we prefetch pre-rendered panoramic
frame of the environment for adjacent locations in the virtual world,
which can be used to render an environment frame of any orien-
tation by cropping. To tackle the second challenge, we use video
compression to drastically cut down the panoramic frame size, and
we further cut each panoramic frame into multiple segments to
enable parallel decoding on multiple cores of the phone.

We have implemented the complete Furion platform on top of
Unity [21] and Google Daydream [8]. We further show the Furion
platform is easy to use – VR apps developed with Unity can be
easily augmented to run on top of Furion.

Finally, we evaluate Furion using three open-source high-quality
VR apps fromUnity ported to Google Daydream, Viking Village [22],

Corridor [4] and Nature [13]. We show Furion can support high-
quality VR apps on today’s smartphone (e.g.,Pixel) overWiFi (802.11ac),
by providing under 14ms latency and 60 FPS (the phone display
refresh rate), under diverse user interactions including controller,
rotation, and movement in the virtual world, for the three high-
quality VR apps. We also show that Furion scales well with app
features, in terms of the number of dynamic objects which enhance
the immersive experience of VR apps. We further show that Furion
supports the above QoE while incurring acceptable resource usage
(under 37% GPU usage and 65% CPU utilization), which allows it
to sustain long running of VR apps without being restricted by
temperature control and frequency capping. Finally, by moving on-
demand fetching of frames from the server out of the end-to-end
delay critical path, i.e., turning it into prefetching which just needs
to finish in the prefetching window, Furion is robust to transient
network bandwidth fluctuations. In summary, our evaluation shows
that Furion’s cooperative renderer design presents a viable solu-
tion to support high-quality VR apps on today’s mobile hardware
and wireless networks.

2 MOTIVATION
2.1 VR background

A typical VR system consists of three key components: a VR
headset, a controller and a renderer. The headset serves two pur-
poses: tracking user pose (including both 3D position and 3D ori-
entation) and presenting the VR content to the headset display for
user viewing. The controller integrates several physical buttons,
touchpads and sensors to receive user interactions other than user
pose. Additionally, some VR systems that contain social elements
and support multiple online players can also receive remote in-
teractions from other players via the Internet. The renderer then
renders new frames according to new pose and interactions, which
are updated on the head-mounted display.

2.2 QoE requirements of VR apps
VR apps impose a heavy computation workload on the system

since they have to track user pose and interactively render high-
quality graphics in real time. Any performance degradation can
result in user discomfort or motion sickness due to the near-eye
display characteristics of VR systems [31]. Specifically, to support
acceptable user experience, which is dictated by the human biology,
modern VR systems have to meet three critical performance and
feature requirements:

(1) Responsiveness: The motion-to-photon latency should be
low enough, e.g., under 10-25ms [26], in order to sustain
good user experience.

(2) High-quality visual effects: The VR system should not
only render photo-realistic scenes in presenting the immer-
sive virtual environment for users, but also ensure seamless
playbacks by offering high frame rates (e.g., 60 FPS is a mini-
mum target [31]).

(3) Mobility: A tethered VR headset presents a potential trip-
ping hazard for the user. The VR system or at least the head-
set component should be untethered in order to provide the
ultimate VR experience [28, 29].
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(a) PolyRunner (b) Viking Village (c) Corridor (d) Nature

Figure 1: A subset of VR apps used in our study: PolyRunner is low-quality, and the rest are high-quality.

2.3 High-quality mobile VR is delay limited
Accomplishing the first two QoE requirements simultaneously

for high-quality VR apps, however, has remained unattainable today
on mobile systems due to the limited capability of mobile hardware
and wireless technologies. As a result, all current high-end VR
systems (e.g., OculusRift [16], HTC Vive [9]) are tethered, providing
good visual quality and responsiveness at the cost of mobility. In
particular, these systems execute the heavy workload on powerful
servers, and stream rendered frames to the headsets over high
bandwidth cables.

Cutting the cord of high-quality VR systems is challenging be-
cause of the mismatch between their strict QoE requirements and
mobile computation/network capability. To understand the gap
between the two QoE requirements of high-quality VR apps (la-
tency and FPS) and what today’s mobile hardware and networking
capability can deliver, we experimentally measure the achievable
QoE under two straight-forward approaches to support mobile VR:
local rendering and remote rendering.

2.3.1 Approach 1: Local rendering. The straight-forward ap-
proach to enable untethered VR systems is to perform rendering
entirely on the mobile device, or local rendering for short. In fact,
local rendering has been recently made available on commercial
mobile VR systems such as Google Daydream [8] and Samsung
Gear VR [7] to interactively render VR contents via the CPU/GPU
on the smartphone. However, today’s mobile VR systems can only
support VR apps with low graphical quality which often breaks
the illusion of immersion [31, 51], as they cannot satisfy the mini-
mum QoE in running high-quality VR apps due to the constrained
computation resource.

To quantify the resource usage and achieved QoE of popular
VR apps on today’s high-end mobile device, we experimented with
seven popular VR apps on Google Daydream, as listed in Table 1:
PolyRunner [18], Lego [10], vTime [25] and Overlord [17] are popu-
lar but low-quality Android VR apps available in Google Play which
all have controller interactions, and Viking Village [22], Corridor
[4] and Nature [13] are high-quality virtual-world Unity apps with
more complex, realistic and immersive environments as shown
in Figure 1. Because Viking, Corridor and Nature are three high-
quality Unity apps originally designed for high-end PCs, we used
Google Daydream SDK to port them to run on Android and added
support for rendering virtual reality as well as controller interac-
tions.

We ran the seven VR apps on a Pixel smartphone running An-
droid 7.1. We used FPS and the BRISQUE value [46] to quantify the

Table 1: QoE and CPU/GPU load when running different VR
apps on Pixel. A lower BRISQUE value of an app indicates
better visual quality.

App
Name

BRISQUE[46]
Score FPS

CPU
Load

GPU
Load

Low-quality VR apps
PolyRunner [18] 89.19 60 36.2% 68.9%

Lego [10] 59.31 52 39.3% 74.4%
vTime [25] 54.48 47 41.7% 70.3%

Overlord [17] 50.10 41 44.8% 84.9%
High-quality VR apps

Viking [22] 24.37 11 55.8% 99.9%
Corridor [4] 26.67 9 55.5% 99.8%
Nature [13] 26.67 16 59.9% 99.8%

QoE, where the BRISQUE value is a well-known non-reference im-
age quality access (IQA) metric. A lower BRISQUE value indicates
better image quality and higher visual complexity for an app.1

The results in Table 1 show that (1) even the first four, low-
quality VR apps incur up to 85% GPU utilization, while driving the
CPU at 40% utilization2 on average, and yet could only achieve
41 to 60 FPS; (2) the three high-quality VR apps, Viking, Corridor
and Nature, exhausted both the GPU (100% utilization) and CPU
(55-59% utilization), yet could achieve only 9-16 FPS, which makes
the apps not usable. These results suggest that the VR rendering
workload is simply too heavy for today’s high-end mobile systems
such as Pixel and as a result the VR apps suffer a rendering delay
of 63-111ms which is far longer than the required 16ms per-frame
rendering interval.

To summarize, under local rendering, the time to render a frame
(roughly the inverse of each app’s FPS) is:

Tphone_r ender = 63 ∼ 111ms (1)

2.3.2 Approach 2: Remote rendering. The overwhelmingCPU/GPU
demand of local rendering on mobile devices motivates the alter-
native approach to support untethered VR of offloading the high
rendering load to a powerful server and streaming the newly ren-
dered frames to the headset via the wireless network, or remote
rendering for short. In essence, this approach trades off computa-
tion workload for network workload. Under remote rendering, the
time to render a frame is:

Tr emote_r ender = Tr eq +Tserver_r ender +Ttransf er (2)

1There is no well-defined threshold BRISQUE value for defining acceptable image
qualities.
2Throughout the paper, phone CPU utilization refers to the average utilization of all
cores.
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Table 2: Latency breakdown when we stream high-quality
VR content from a strong desktop to a smartphone via
802.11acWLAN. The average FPS of each app is about 5. The
peak network throughput is about 400Mbps.

App Server
Render

Network
Delay (req/Xfer) Frame Size

Viking 11ms 3/208 ms 10MB
Corridor 10ms 3/216 ms 10MB
Nature 8ms 3/214 ms 10MB

To quantify the resource usage and latency achieved of such an
approach, we developed and profiled remote rendering versions for
the three high-quality, open-source apps in Table 1. Specifically, we
used Google Daydream SDK to split each app into a client app and
a server counterpart where the client app running on the phone
sends new user pose and controller interactions to the server app
running on the PC, and the server app performs rendering of all
objects and sends the rendered new frames back to the client app
over the wireless network.

In our experiment, we ran the server of each app on a strong
desktop, which has an Intel 6-core i7-6850K CPU, EVGA GTX1080
graphic card, and 256GB SSD, and ran the client of each app on
Pixel, and the server sends rendered frames via an 802.11ac WLAN.
We used 802.11ac because it provides the highest wireless band-
width (about 400 Mbps in TCP) on current commodity smartphones.

The results, shown in Table 2, identified two QoE bottlenecks in
supporting mobile VR apps using remote rendering over today’s
wireless networks:

(1) Long transfer delayTtransf er .Wemeasured the QoEwhen
the server streams raw frames in uncompressed format (Bitmap).
The three VR apps use up the available network bandwidth (367-
384 Mbps) yet still can only achieve on average 5 FPS. This is
because transferring the raw data of one high-resolution frame
(i.e., 2560*1440 pixels, about 10 MB) over 802.11ac already takes
between 208-216ms. To support 60 FPS or higher requires streaming
each high-quality frame well under 16ms, and would require at
least 4 Gbps or 10X that of today’s WiFi bandwidth, or about 200X
that of today’s LTE bandwidth (which is about 20 Mbps). A recent
study [28] also confirmed multi-Gbps bandwidth is needed for
supporting high-quality VR apps in remote rendering.

(2) Network latency delay Tr eq . Even if the wireless network
has infinite bandwidth and hence the transfer time is insignificant,
sending a request for the new frame and receiving the rendered
frame from the server suffers a minimum round-trip delay. To
measure the delay, we wrote a simple benchmark that performs
back-to-back RTT measurements by sending and receiving 20-byte
requests and replies from the server (to avoid the periodical SDIO
bus sleep which inflates RTT [44]). Figure 2 shows the CDF of
the measured RTTs from the Pixel to the LinkSys EA6350 AP
over 802.11 b/g/n/ac, respectively. We see that the latency varies
between 2ms minimum to 4ms at the 80th percentile, with a long
tail reaching beyond 6ms. These results are consistent with those
observed in [44]. The RTT can be explained by about 2ms base
latency of PHY layer transfer (RTS/CTS/DATA/ACK) and the 1ms
(median) delay in traversing the hardware/driver/kernel stack on
the phone, which is again limited by the phone hardware capability.

0 2 4 6 8 10
RTT (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

802.11ac
802.11n
802.11g
802.11b

Figure 2: App-level RTT in different WiFi networks.

In summary, on today’s high-end handset and highest bandwidth
wireless network 802.11ac, the time to render a frame under on-
demand remote rendering is:

Tr emote_r ender
(230ms )

=
Tr eq
(3ms )

+
Tserver_r ender

(11ms )
+
Ttransf er
(216ms )

(3)

Summary: Supporting mobile VR on today’s mobile hardware
and wireless networking is fundamentally delay limited due to the
wide gap (at least 10X) between the strict QoE requirements of VR
apps dictated by human biology (i.e., visual perception) and the
long rendering delay due to limited mobile CPU/GPU hardware
and wireless network bandwidth.

3 WILL FUTURE HARDWARE/NETWORKS
HELP?

Given neither local rendering nor remote rendering can support
untethered VR on today’s mobile hardware and wireless networks,
we ask the question – will waiting for tomorrow’s mobile hardware
and wireless networks help?

Mobile hardware are power limited. Weargue that the CPU/GPU
of mobile handsets will not grow significantly more powerful because
of the power constraint. First, just like their counterpart in desktops
and servers, the CPUs in mobile handsets are not getting faster, due
to temperature and power limitation in the chip design. Second,
since mobile handsets are fundamentally energy constrained, the
CPUs on mobile devices are made to be less powerful (though often
more power efficient), and come with far fewer cores, than their
counterparts on desktops and servers.

In fact, the improvement of CPU/GPU capability of mobile hand-
sets in high-end mobile handsets has already tapered off in recent
years. Table 3 lists the CPU/GPU frequency and number of cores
for the high-end Android handsets in the past five years and the
upcoming S8+ (at the time of paper submission). We observe that
(1) the CPU in these high-end phones has more or less converged
to quad cores; although Nexus 6P comes with Octa cores, the upper
four cores are rarely turned on due to temperature control; (2) the
CPU frequency appears to have converged to between 2-2.5 GHz;
(3) while the GPU frequency appears to be slowly increasing, we
believe its provision benefited from larger batteries that come with
larger phones adopted by the consumers in the past few years; the
phone size clearly will not forever increase.

The stagnating improvement of CPU/GPU capabilities in mobile
handsets suggests that local rendering will unlikely become a viable
solution to support untethered VR apps.
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Table 3: Evolution ofCPU/GPU inhigh-endmobile handsets.
Higher frequency benefited from larger batteries.

Phone
(year)

Battery
(size) CPU GPU

Nexus 4
(2012)

2100 mAh
(4.7 inches)

Quad-core
1.5 GHz Krait

Adreno 320
400 MHz

Nexus 5
(2013)

2300 mAh
(5.0 inches)

Quad-core
2.3 GHz Krait

Adreno 330
450 MHz

Nexus 6
(2014)

3220 mAh
(6.0 inches)

Quad-core
2.7 GHz Krait

Adreno 420
500 MHz

Nexus 6P
(2015)

3450 mAh
(5.7 inches)

Octa-core
2.0+1.55 GHz

Cortex-A57+A53

Adreno 430
600 MHz

Pixel XL
(2016)

3450 mAh
(5.5 inches)

Quad-core
2.15+1.6 GHz

Kryo (2 sm, 2 lg)

Adreno 530
650 MHz

Galaxy S8+
(2017)

3500 mAh
(6.2 inches)

Octa-core
2.45 GHz Kryo

Adreno 540
710 MHz

Table 4: Evolution ofwireless technologies.Weplot both the-
oretical peak bandwidth and achieved peak throughput of
different cellular and WiFi networks.

Type EDGE UMTS HSPA LTE
Theoretical 1 Mbps 7.2 Mbps 42 Mbps 100 Mbps
Practical 384 Kbps 2 Mbps 10 Mbps 20 Mbps
Type 802.11b 802.11g 802.11n 802.11ac

Theoretical 11 Mbps 54 Mbps 600 Mbps 1.3 Gbps
Practical 6 Mbps 20 Mbps 100 Mbps 400 Mbps

Will next-generationwireless networks help?Compared to
mobile CPU/GPU evolution,WiFi and cellular networking technolo-
gies have seen continuous and more rapid improvement. Table 4
lists the peak bandwidth provided by the generations of WiFi and
Cellular. We see that in the past 10 years, the deployed cellular
networks have evolved from 2.5G to 3G to LTE/4G, with achieved
peak throughput growing from 384Kbps in 2.5G to 20 Mbps in LTE.
Development of 5G started in year 2012 and wide deployment is
estimated to happen in 2020. 5G is promised to deliver up to 1Gbps
peak bandwidth [15], or 10X that of LTE/4G. Similarly, WiFi has
evolved from 802.11a/b to 802.11ac which has a theoretical peak
bandwidth of 1.3 Gbps and delivers up to 400 Mbps TCP throughput
in practice, with 802.11ad promising a theoretical peak bandwidth
of 7 Gbps.

However, we argue the multi-Gbps bandwidth promised by the
next-generation wireless networks will not make remote rendering
readily feasible, for the following reason.

Packet processing will exhaust the mobile CPU.
Packet processing at high throughput, which includes interrupt-

driven packet receiving and stack processing, consumes a signifi-
cant amount of CPU [39]. Since mobile CPUs will not become much
faster or employ many more cores as discussed above, they will not
be able to keep up with the 10X throughput increase.

To quantify how much the CPU is already consumed by packet
processing, we measured the CPU utilization of Pixel when run-
ning a microbenchmark that performs downloading from a server
connected via an 802.11ac WiFi AP under TCP. We ran the Linux
tool tc on the server to control the peak throughput between the
phone and server.
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Figure 3: CPU utilization of Pixel from packet processing
under varying downloading throughput.

Figure 3 plots the CPU utilization as the TCP throughput varies.
We observe that (1) at 400Mbps, the average utilization of the 4 cores
of Pixel is already at 27%; (2) the CPU utilization scales roughly
linearly with the TCP throughput; (3) under linear extrapolation,
the CPU utilization would reach an unrealistic 270% at 4 Gbps (or
70% on 16 equivalent cores of Pixel).

Need software innovation. Given that waiting for the future
mobile hardware or next-generation wireless networks is unlikely
to help, we argue that the likely path to support untethered high-
quality VR apps is via software innovation. In fact, following the
same reasoning above, if such a software solution exists, it should
work on today’s mobile hardware and wireless networks.

4 EXPLORING VIDEO COMPRESSION
We start our quest for a software solution to support untethered

VR apps today with the remote rendering approach discussed in
§2.3.2, by exploring a classic technique for trading off computation
time for reduced network transfer time: compression.

It is well known that for transferring consecutive frames that ex-
hibit significant redundancy, as is the case with consecutive frames
in a VR app, video compression gives high compression ratio. This
is achieved by encoding the reference frame into an I frame which
is relatively large and self-contained, and encoding the subsequent
frames as much smaller, dependent P frames which encode the delta
relative to the reference I frame and proceeding P frames.

Recall the original remote rendering approach suffers about
200ms transfer delay due to the large frame size, about 10 MB.
We implemented three state-of-the-art video compression schemes:
MJPG (a JPEG-based video encoding scheme), H.264 [27] andVP9 [23],
to encode each on-demand requested frame rendered at the server
relative to a reference frame previously rendered which is already
streamed to the phone. Specifically, in each implementation, we
use the mjpeg tool [12], libx264 [27] or libx-vp9 [11] to encode
the frame on the server and leverage Android MediaCodec [2] to
decode frames on the phone.

We then reran the three high-end VR apps on Pixel and mea-
sured the QoE when the server streams compressed frames in
MPEG, H.264 or VP9. Table 5 shows that (1) MJPG compression
incurs an encoding time of up to 17ms and reduces the average
frame size to about 400KB for the three VR apps which cuts down
the frame transfer time to 14ms, but it also incurs a high decoding
delay of 128-137ms on the phone, which makes the end-to-end
delay in remote rendering a new frame on-demand stay at about
179ms (3ms + 11ms + 17ms + 11ms + 137ms). (2) Although VP9
achieves the highest compression ratio and smallest per-frame size,
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Table 5: Latency breakdown when we stream high-quality
VR content from a strong desktop to a smartphone via
802.11ac WLAN, with video compression. M:MJPG. H:H.264.
V:VP9. In each case the peak network throughput is about
400Mbps.

App
(Format)

Server
(render/
encode)

Phone
decode

Network
Delay

(req/Xfer)

Frame
Size

Viking (M) 11ms/16ms 134 ms 3/11 ms 407KB
Corridor (M) 10ms/17ms 128 ms 3/11 ms 379KB
Nature (M) 8ms/17ms 137 ms 3/10 ms 369KB
Viking (H) 11ms/9ms 15 ms 3/8 ms 286KB
Corridor (H) 10ms/10ms 16 ms 3/8 ms 277KB
Nature (H) 8ms/9ms 14 ms 3/7 ms 272KB
Viking (V) 11ms/193ms 72 ms 3/7 ms 228KB
Corridor (V) 10ms/188ms 83 ms 3/7 ms 209KB
Nature (V) 8ms/202ms 67 ms 3/6 ms 215KB

it also has the highest encoding/decoding time. (3) In contrast,
H.264 compression not only cuts down the frame size to be under
286KB and the server encoding time and frame transfer time to be
under 10ms and 8ms, it also cuts down the phone decoding time to
be under 16ms. Overall, H.264 presents the most effective tradeoff
between network bandwidth reduction and phone decoding time.

Under H.264 compression, the end-to-end time to remotely ren-
der a frame on demand for the three apps is bounded by:

Tr emote_r ender
(48ms )

=
Tr eq
(3ms )

+
Tr ender
(11ms )

+
Tencode
(10ms )

+ (4)

Ttransf er
(8ms )

+
Tphone_decode

(16ms )

Examining each of the five components of the end-to-end delay
of 48ms, we see none of the components will easily improve: while
higher bandwidth wireless network will reduce Ttransf er , its ef-
fect will likely be limited by the CPU capability of the phone as
discussed in §3. Therefore, although the end-to-end delay of 48ms
is only 3X from the per-frame interval of 16ms, the gap appears
very challenging to bridge.

5 KEY INSIGHT
The five components of the end-to-end time to render a frame

in Equation (4) can be separated into two groups. The first group,
consisting of the first four components, includes the delay in on-
demand requesting, server rendering and encoding the new frame,
and transferring the new frame over the network. The second group
consists of the time to decode the compressed frame on the phone.

To gain insight on how to reduce the delay in the first group,
we studied more than 50 popular VR apps collected from Google
Daydream platform and Unity Store to understand the VR rendering
workload. From the study, we derived four VR-specific insights:

(1) For most VR apps, the VR content rendered can be divided
into foreground interactions and background virtual environ-
ment. For example, for the VR app we have tested in Figure 1,
the interaction is the flyer in Figure 1a, the axe in Figure 1b,
the gun or enemies in Figure 1c, or the animals in Figure 1d,

Table 6: Resource usage when rendering only foreground in-
teractions or background environment. TPF is average ren-
dering time per frame.

App
Interaction only
(TPF/CPU/GPU)

Environment only
(TPF/CPU/GPU)

Viking 13ms / 29% / 22% 82ms / 42% / 95%
Corridors 13ms / 40% / 22% 104ms / 53% / 83%
Nature 12ms / 32% / 20% 61ms / 56% / 82%

which interact with the user via the controller. The environ-
ment refers to the background virtual world that covers the
majority of the space in the display.

(2) Interactions are triggered by operating the controller or sig-
nals from other players. As a result, their animations are
random and hard to predict.

(3) In contrast, the background environment is updated accord-
ing to the user movement and thus changes continuously
and is predictable. However, at a given location, the user
may change orientation abruptly, e.g., from turning, and the
environment seen from the new viewing angle may change
significantly, although the environment itself did not change.

Next, we break down the cost of rendering foreground interac-
tions and background environment for the three high-quality VR
apps in Figure 1 on Pixel. Specifically, for each app we build two
new versions that disable the call for drawing foreground inter-
actions and the background environment, respectively. We then
measure the frame rendering time and CPU and GPU utilization
of each version. Table 6 shows the results. We see that rendering
interactions only takes 12-13ms, which is 7X shorter than render-
ing both interactions and environment (§2.3.1), and consumes only
29-40% CPU utilization and under 22% GPU utilization on the Pixel
phone. In contrast, rendering only the environment takes 61-104ms
which is about 90% of the delay in rendering both interactions and
environment (§2.3.1). Thus we draw our next insight about VR
rendering workload:

(4) In terms of rendering workload, foreground interactions
are much more lightweight compared to the background
environment. This is because the realistic, immersive envi-
ronment in high-quality VR apps contains rich details and
complex textures (e.g., the sophisticated buildings and shad-
ows in Figure 1) which incur significant rendering overhead.

6 COOPERATIVE RENDERING
6.1 Phone/server cooperative rendering

The above insights on the predictability and workload in render-
ing interactions and environment in VR suggest an effective way
to enable high-quality mobile VR is to:

(1) divide VR rendering workload into foreground interactions
and background environment,

(2) leverage the local mobile GPU to render foreground interac-
tions,

(3) leverage the remote rendering engine on the server to pre-
render and pre-fetch the background environment, and fi-
nally,

(4) combine them on the phone to generate the final frames.
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Figure 4: The prefetching process.

The key advantages of such a cooperative rendering approach
between the phone and the server are (1) offloading a majority of
the rendering load significantly reduces the computation overhead
on the phone; (2) pre-rendering and pre-fetching environments hide
the delay from on-demand rendering of environments (first four
components in group 1 in Equation (4)); (3) rendering interactions
locally avoids the network latency from on-demand rendering of
interactions (which cannot be pre-rendered due to unpredictability).

With such cooperative rendering, the time to render a new frame
is reduced to:

Tco_r ender = max (Tphone_r ender_intr ,Tphone_decode_env )

+Tinteдrate (5)
Constraint: environment frames are pre-fetched in time

The split architecture design requires an integration step that
integrates the locally rendered interactions with remotely rendered
environment into the final frame for displaying. Following the
typical rendering framework (e.g., OpenGL ES), where the pixel
data of each object are rendered and integrated in a frame buffer
before being sent to display, in cooperative rendering, the pixel
data from the interaction renderer and the prefetched environment
frame will be integrated in the frame buffer.

Thus, barring the following two remaining challenges, the above
cooperative renderer design holds the promise to render a frame
within the per-frame rendering interval of 16ms:

Q1: How to pre-render and pre-fetch environment frames just
in time to be used for rendering the new frame?

Q2: How to speed up phone decoding time to be within the 16ms
interval?

6.2 Prefetching panoramic frames
In the basic cooperative renderer design, we assume the next

frame to be rendered can be pre-rendered and prefetched. How-
ever, straightforwardly applying prefetching in VR would face two
challenges: (1) There are almost infinite possibilities for the next
pose since a user can freely change position and orientation; (2)
Delivering a large number of high-quality frames pre-rendered by
the server to the client will incur significant bandwidth overhead
and accordingly high CPU utilization on the client (from packet
processing).

We tackle these challengeswith a set of VR-specific optimizations
as follows.

Leveraging movement delay to prefetch frames. In a VR
system, the virtual world is discretized into grid points or grid loca-
tions, as shown in Figure 4, and rendering the faraway environment
at any location in between grid points is approximated with ren-
dering from the nearest grid point. We define the distance between
two adjacent positions as density (d). Effectively the grid density
determines the smoothness of rendering during user movement in

Table 7: Cutting down pre-rendered and pre-fetched frames.

Method
Data to fetch

(In a time window (d/v ))
Naive prefetching 5*N frames (5*10*N MB)

Panorama ≤ 3 panoramas (3*31 MB)
Panorama+ 1 video (300-400 KB)

+Video compression

the virtual world. Previous studies (e.g., [31]) have shown that for
high-end VR apps, setting the density to 0.02 Unity units (which
corresponds to about 2cm) is sufficient to sustain smooth rendering
during user movement.

The discretization of the virtual world and delay in user move-
ment to the next grid location provides us the opportunity to
prefetch the frame for the next location. In particular, the time
it takes the user to move from one grid point to an adjacent point is
determined by the movement speedv . We make an observation that
for realism, the typical user movement speed (e.g., walking) in the
virtual world is similar to in the real world, at about 1m/s. Dividing
the grid density by this speed gives 20ms as the time interval for a
user to move between adjacent grid points. This is the time window
for prefetching the frame for the next grid location.

Using a panoramic frame to encapsulate all possible ori-
entations. In a VR system, a user pose is composed of a position
and an orientation. While there are only a few adjacent grid lo-
cations the user can move to next, at the next grid location, the
user can freely change to any orientation (by turning the headset)
abruptly which is difficult to predict, and hence pre-rendering and
prefetching the frame with the right orientation is hard.

To overcome this challenge, we pre-render a panoramic frame
for each grid location which conceptually aggregates or encodes
all possible orientations at that fixed position, i.e., a frame with
any orientation from that location can be easily cropped from the
panoramic frame. Whenever the user moves to one location, we can
start prefetching the panoramic frame for the next grid location.

Prefetching frames for all adjacent positions. Since there
are four grid locations surrounding each grid location, prefetch-
ing one panoramic location for only one adjacent grid location
requires predicting which grid location the user will next move to,
which is not always easy. To avoid complicated prediction and miss-
predictions, at each grid location, we prefetch panoramic frames
for all adjacent grid locations.

Since prefetching is done incrementally as the user moves, the
number of frames to prefetch at each grid point is up to three, as
shown by the example in Figure 4. Assume initially the user stands
at position 0, and panoramic frames 1-4 are already prefetched. Then
at t1 the user starts to move to position 3, and at the same time we
prefetch panoramic frames for positions 5, 6, and 7. Similarly at t2,
the users starts moving to position 7 and only frames in 8 and 9 are
prefetched. Note in moving between positions 3 and 7, since the
phone already prefetched panoramic views for both positions, it
can decode a frame with any orientation locally.

Encoding multiple panoramic frames. Fetching a single
panoramic frame for each grid location instead of many possible
frames (for N possible orientations) already significantly cuts down
the total frame size, from 5*N *10MB down to 3*31MBwhenwithout
video compression, as shown in Table 7. With video compression,
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Table 8: Latency of each step when we prefetch the back-
ground environment for Viking Village. Latencies of other
two VR apps are similar.

On-demand Tphone_r ender_intr Tphone_decode
13ms 45ms

Prefetching Tr eq Ttransf er Twalk
3ms 10ms 20ms

Panorama
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Seg 2
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Seg 4

Spherical view 

25%

25%

25%

25%

Seg 1

Seg 2

Seg 3

Seg 4

360°

Figure 5: Parallel decoding: leveraging multi-core to decode
frame segments in parallel.

one panoramic frame can be compressed down to a P-frame of
under 133KB on average (using the panoramic frame at the current
grid point as reference).

Encoding the three panoramic frames incrementally (i.e., into
three dependent P-frames) potentially gives higher compression
ratio, but this can significantly increase the decoding time, to about
110ms, as decoding the last of the three panoramic frame in the
video requires decoding the first two. For this reason, we encode
each of the three panoramic frames (e.g., for position 5, 6, and 7)
as an independent P frame relative to the reference frame that the
phone already has (e.g., for position 3). Making the three P-frames
not dependent this way reduces the decoding time of any P-frame
(panoramic frame) to 45ms on average, at the cost of a slightly
decreased compression ratio (about 9% reduction). We denote this
non-successive variation of video encoding as direct encoding.

Delay reduction.Wemeasured the delay reduction on the three
reference VR apps from prefetching panoramic frames and video
compression discussed above on the Pixel phone, over 802.11ac
WiFi. Table 8 shows five components of the process. On one hand,
sending the request for and transferring of three panoramic frames
can be finished in 13ms, which is less than the 20ms delay for the
user to walk from one grid location to the next, and hence satisfying
the prefetching constraint in Equation (5):

Constraint : Tr eq
(3ms )

+
Ttransf er
(10ms )

≤
Twalk_to_next_дr id_point

(20ms )
(6)

On the other hand, decoding any one of the three panoramic frames
in the compressed video takes about 45ms, much higher than the
16ms for decoding a compressed regular frame (Table 5).

6.3 Parallel decoding on the phone
We observe that decoding a panoramic frame is an inherently se-

quential process, and hence does not employ the parallelism offered
by the multiple cores on modern handsets. To exploit the hardware
parallelism, we cut each panoramic frame into N segments, each
at 1/N of the original size, encode the corresponding segments of
the three panoramic frames into N videos. Since the redundancy

Table 9: Latency of each step with parallel decoding for
Viking.

On-demand Tphone_r ender_intr Tphone_decode
13ms 12ms
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Figure 6: Furion system architecture.

remains between the corresponding segments and that of the ref-
erence panoramic frame (on the phone), the video compression
ratio should remain high. More importantly, decoding on the phone
of the N segments of each panoramic frame can now be done on
N cores in parallel. Since Pixel comes with four cores, we experi-
mented with different N (between 2 and 8) and found N = 4 gives
the best decoding time. Figure 5 shows how a panoramic frame is
segmented into 4 segments.

Table 9 shows parallel decoding of four segments reduces the
phone decoding time from 45ms to 12ms, and the end-to-end time
to render a new frame tomax (13ms,12ms ) + 1ms = 14ms , which
allows the VR apps to achieve 60 FPS.

6.4 Putting it together: Furion architecture
Incorporating the above ideas, we have developed Furion, a VR

framework that enables high-quality, immersive mobile virtual re-
ality on today’s mobile device and wireless networks, by providing
high visual quality, high frame rate, and low latency.

Figure 6 shows the system architecture and the workflow of Fu-
rion. At a high level, Furion includes the client part and the server
part which cooperatively render VR contents to the user. The sensor
module on the client tracks pose changes, including both position
and orientation changes of the user headset, together with addi-
tional user inputs from the controller. The key component on the
client is the cooperative renderer, which splits the VR workload into
a local part and a remote part, and offloads the remote part to the
server. Specifically, for each user pose, it renders locally the inter-
actions and requests the parallel decoder to decode the background
environment from a pre-fetched panoramic frame (4 subframes),
combines the rendered interactions and decoded environment and
sends it to the frame distortion module, which generates the final
frame for each eye and displays to the user. Whenever the user
moves to a new grid location, the prefetcher sends a request to
the server to request for panoramic frames corresponding to up to
three new adjacent grid locations.

The server part is a generic environment rendering engine that
is initialized with app-specific objects, and pre-renders panoramic
frames for each grid location. At runtime, the parallel encoder
engine loads up to 3 panoramic frames specified in the client request,
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Figure 7: Developing VR apps with Furion.

cuts each panoramic frame into 4 segments, encodes them with
reference to the panoramic frame (subframes) in the last grid point
using H.264 codec, and transfers the encoded video to the phone
over the wireless network.

7 DEVELOPING VR APPS WITH FURION
We have implemented Furion on top of Unity and Google Day-

dream SDK. Before discussing the implementation details, we first
describe the user interface of Furion, i.e., how a developer uses
Furion to develop VR apps.

Quick primer of Unity. Typically a VR app is developed by
some virtual scene creation tools or game creation IDE, such as
Unity and Unreal. We build our Furion system on Unity. Figure 7a
shows the basic workflow of building apps with Unity. Specifically,
Unity provides a WYSIWYG editor that allows a developer to work
on a scene that describes the interactions and virtual environment
in the app. A scene contains a number of objects that represent the
basic unit at the development time, and the developer can change
the property of an object by adding new material and texture to
it. In addition, the developer can also write a script for each object
to add animation and game logic. Unity then converts the visible
scene to native codes and finally compiles the code to generate the
executable app.

Developing VR with Furion. Furion provides an easy-to-use
way for developers to augment VR apps developed using Unity.
Figures 7b and 7c show the process to build the client and server
part of a VR appwith Furion. Specifically, we implement and export
the cooperative renderer, the prefetcher and the rendering engine
as specific prefabs in Unity, which can be imported and used in the
app at the development time. In addition, we implement the parallel
codec module as a library which is linked at the compiling time.
For developers, augmenting a VR app with Furion only requires
adding Furion prefabs in the scene and configuring app-specific
parameters (e.g., the reachable area in the scene) in the prefab.

8 IMPLEMENTATION
We describe a number of practical issues in implementing Fu-

rion.
Cooperative Renderer. In Furion, the cooperative renderer

renders interactions using the mobile GPU and fills the surrounding
environments with the panoramic frame rendered by the server.
We leverage the native Unity API to write a Unity prefab called

EnvTexture that can load frames generated from an external player
and draw surrounding environments. With EnvTexture, Furion
composes interactions and environments rendered on the client
and server respectively. The cooperative renderer is implemented
in around 1900 lines of C# code.

Prefetcher. We implement the prefetcher module in Furion
as a prefab in Unity to calculate the user position and determine
the time and data of a prefetching operation, according to the
current user position. We build a series of rendering cameras in the
rendering engine on the server to pre-render panoramic frames,
each containing 3840*2160 pixels. The prefetcher together with the
rendering engine on the server are implemented in around 2100
lines of C# code.

Parallel Codec. The basic requirement of our Parallel Codec is
to encode the 4 segments per panoramic frame on the server and to
quickly decode them to display a specific frame on the mobile client.
We implement the parallel codec module by extending existing
ffmpeg [6] and x264 [27] libraries.We extend the encoding/decoding
module in the x264 library to support direct encoding and modify
the sequential playback logic in ffmpeg to support parallel decoding.
To synchronize all segments during the playback in ffmpeg, we
build one decoding thread for each segment and a master thread
to send the entire frame to the display hardware once all segments
are decoded. In addition, we build a separate network process to
deliver the compressed video to the client over TCP. Collectively,
we modified about 1100 lines of C code in the ffmpeg and x264
libraries.

Sensing and Distortion. We leverage the Google Daydream
SDK to (1) build the sensor module to read pose and additional user
inputs from the controller and (2) perform distortion on the frame
generated by the cooperative renderer.

9 PERFORMANCE EVALUATION
In this section, we evaluate the end-to-end performance and

system overhead of VR apps built upon Furion.

9.1 Experiment setup
We run the Furion server on a strong desktop as we described

in Section 2. We run the client app on a Pixel smartphone running
Android 7.1 with Google Daydream support. The client commu-
nicates with the server via an 802.11ac AP which supports up to
400Mbps TCP throughput for a single device. We augment the three
high-quality apps as we described previously (Viking [22], Corridor
[4], and Nature [13]) with Furion to support high-quality virtual
reality.

We build three implementations of each app in our experiment:
(1) Mobile: a local rendering version that renders all VR content
locally; (2) Thin-client: a remote rendering version that offloads
all rendering workloads to the server and encodes frames with
H.264; (3) Furion: built on Furion which leverages both client
and server to cooperatively render VR content. We do not compare
our solution with MoVR [28, 29] because there is no 60GHz WiFi
support in current commodity smartphones, or with FlashBack [31]
which does not support user interactions.
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Table 10: Visual quality and FPS of each VR app under dif-
ferent implementations.

App
(Implementation)

Visual Quality
(Average SSIM)

Average
FPS

Viking (Mobile) 0.812 11
Corridor (Mobile) 0.834 9
Nature (Mobile) 0.833 15

Viking (Thin-client) 0.927 36
Corridor (Thin-client) 0.933 34
Nature (Thin-client) 0.944 37
Viking (Furion) 0.927 60
Corridor (Furion) 0.933 60
Nature (Furion) 0.944 60

In the Furion versions of the three VR apps, the total size of the
panoramic frames pre-rendered by the server are 74 GB, 71 GB, and
53 GB, respectively.

9.2 Visual quality, frame rate, responsiveness
Image quality.We use Structural Similarity (SSIM) [59] to quan-

tify the image quality of different schemes. SSIM is a standard
metric from the video processing community used to assess the
user-perceived loss in frame quality between the original version
A and a distorted version B. SSIM has a value between 0 and 1; a
larger SSIM value indicates higher fidelity to the original frame. In
our experiment, we use SSIM to compare each final frame rendered
by each scheme with the corresponding original frame rendered by
the strong desktop (before encoding). All final frames are rendered
with 2560*1440 pixels.

Table 10 shows the visual quality results. The SSIM value of
the mobile rendering system is about 0.812, which falls short of
high graphics quality. The visual quality decreases because the
quality manager inside the Android rendering system automatically
disables some functions that provide immersive visual effects (e.g.,
anti aliasing and color grading) but are too computation intensive
on mobile devices. The SSIM values under Furion and Thin-client
are identical as both go through H.264 encoding and decoding,
and integration of rendered interactions and decoded environment
under Furion does not affect image quality. Further, the SSIM values
are above 0.927. A SSIM value higher than 0.9 indicates that the
distorted frame well approximates the original high-quality frame
and provides “good” visual quality [37].

Frame rate. To enable a smooth immersive experience, it is
necessary for the VR system to deliver at least 60 FPS. Table 10
shows across the three high-quality VR apps, the mobile system
delivers the lowest FPS, between 9-15, the thin-client version de-
livers between 34-37 FPS, while Furion comfortably delivers 60
FPS. We note that the 60 FPS frame rate of Furion is not limited
by our implementation, but by the 60Hz refresh rate of the display
hardware on Pixel.

Responsiveness. Following [31], we define app responsiveness
as the latency or elapsed time from when the last pose or user
action is received from the device until when the corresponding
frame is sent to the display. We note the latency thus defined does
not include the latency contributed by the input subsystem and the
display hardware, which are difficult to measure and equally present
when VR apps execute under any of the three schemes. We evaluate

Table 11: System overhead of VR apps upon Furion.

App
CPU

Utilization
(Pixel/6P)

GPU
Utilization
(Pixel/6P)

Average
Bandwidth
(Pixel/6P)

Viking 64% / 76% 37% / 63% 127 Mbps / 131 Mbps
Corridor 62% / 71% 34% / 61% 132 Mbps / 122 Mbps
Nature 65% / 73% 33% / 64% 130 Mbps / 128 Mbps

the app responsiveness under three user interaction scenarios: (1)
controller latency for clicking the controller; (2) rotation latency
for rotating the headset (orientation); and (3) motion latency for
changing the position.

Figure 8 shows Furion achieves far better responsiveness than
the other two systems. In particular, it achieves under 14ms con-
troller latency, under 1ms rotation latency, and under 12ms motion
latency for the three apps, respectively. In Furion, the rotation la-
tency is much lower than the controller and motion latency because
Furion can quickly generate a final frame for a given orientation
by cropping the in-memory, already decoded panoramic frame.

9.3 Scalability with app features
Next, we evaluate the scalability of different schemes in terms

of different app features, in particular, in terms of the number of
dynamic objects, which enhances the immersive experience of the
VR apps.

We modify the three VR apps with an increasing number of
dynamic objects in foreground interactions and measure the frame
rate of each implementation. Figure 9 shows the result for Viking
Village; results of the other two apps are similar and omitted due to
the page limit. We see as the number of dynamic objects increases,
the local rendering workload increases and as a result the FPS of the
mobile version decreases. The FPS of the thin-client version does
not change because adding more dynamic objects only increases
the workload on the server. Finally, Furion can maintain high FPS
when supporting up to 10 interactive dynamic objects.

9.4 Resource usage
We next evaluate the resource usage of Furion in supporting

the three VR apps.
CPU/GPU usage. We first measure the CPU/GPU utilization

together with the network usage in Table 11. We see Furion incurs
up to 65% CPU utilization and 37% GPU utilization on the Pixel
phone in supporting the three high-quality VR apps with target
low latency and 60 FPS.

Since Google labeled the Pixel phone as VR-ready with its intro-
duction [5], we were curious what new capability made the most
difference, compared to a previous generation phone, Nexus 6P. We
evaluated Furion on Nexus 6P and compared its resource usage
with that on Pixel. Table 11 shows that running the three apps on
Nexus 6P incurs much higher CPU and GPU utilization, up to 76%
for CPU and 64% for GPU, suggesting the VR-readiness of Pixel
mainly comes from the upgraded GPU (Table 3).

CPU usage and temperature over time. Today’s high-end
phones such as Pixel have built-in temperature control to avoid
phone overheating. For example, by default the thermal limit of
Pixel is 58 Celsius (from reading /system/etc/thermal-engine.conf
on the phone). When the thermal limit is reached, e.g., from long
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Figure 8: Responsiveness of different VR implementations.
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running, power-intensive apps, the power control manager will cap
or reduce the CPU/GPU frequency to avoid overheating the phone.

Since VR apps present a new class of power-intensive apps, and
in fact Google proposed explicit thermal requirement [20] that
“your Daydream app must not hit the device’s thermal limit during
30 minutes of usage”, we measured the phone SoC temperature
when running the three VR apps under Furion for 30 minutes.
Figure 12(a)(b) shows during the 30-minute runs, the CPU frequency
and utilization remain steady, and the SoC temperature increases
gradually but stays under the thermal limit.

Power drain over time.We leverage the Google Battery Histo-
rian tool [3] to inspect the power drain of the Android device over
time. Figure 12(c) shows that the power draw stays steady at 410
mA on average in running the three VR apps over the extended
half-hour period. Given Pixel’s battery capacity of 2770 mAh, at
such a power level, the three VR apps can last for about 6 hours.

9.5 Robustness to network instability
Table 11 further shows that supporting the three VR apps in

Furion requires on average 132 Mbps network throughput, well be-
low the 400Mbps peak throughput supported by 802.11ac. Figure 10
shows this is because prefetching panoramic frames of adjacent
positions in the virtual world can quickly complete in a short burst
(about 8ms per Equation (4)) within each 20ms interval of moving
between two adjacent positions. The throughput value in Figure 10
starts from 100ms to exclude the slow start stage.

In fact, the cooperative renderer design of Furion which turns
on-demand fetching of frames from the server into prefetching pre-
rendered frames, effectively moves fetching frames from the server
outside the end-to-end delay path of rendering a new frame. As a
result, prefetching pre-rendered panoramic frames just needs to
finish within the 20ms window. This property suggests Furion can
tolerate transient bandwidth fluctuations as long as the network
provides 130Mbps bandwidth on average (in each window). To
confirm this property, we used the tc tool to control the maximal
available bandwidth on the AP and ran the three VR apps. Figure 11

shows under Furion the delay in rendering of interactions and
in decoding environment stays constant when the average peak
bandwidth is reduced from 400Mbps to 150Mbps.

10 DISCUSSIONS
We now discuss how Furion design can be extended to handle

more complicated VR app features.
Handling drasticmovement. In a VR system, the virtual world

is discretized into grid points and Furion leverages the movement
delay between adjacent points to prefetch future frames in time. As
discussed in Section 6.2, the movement delay is about 20ms under
a normal user movement. However, there can be cases where the
user moves more quickly and the movement delay is too low to
prefetch the adjacent panoramic frame in time. In practice, such
drastic user movement implies there is no need to render frames
at consecutive grid positions, and it can be handled by selective-
prefetching, i.e., prefetching frames from further grid points. For
example, at moment t1 in Figure 4, if the user moves at twice the
normal speed, we just need to prefetch the frames from 2 grid
positions away.

Dynamic objects in background environment. For some VR
apps, the background environment may contain several dynamic
objects, e.g., floating clouds in the sky, or flowing creeks in the
mountain. These dynamic objects are typically small and have
similar workloads as foreground interactions. Furion can support
dynamic objects in the environment by rendering them on the local
GPU and superimposing them on the rest background environment.

Multi-player support. Some latest VR apps such as vTime [25]
and Altspace VR [1] contain social elements and enable multiple
users playing in the same virtual environment, e.g., chatting in the
same office. A key feature of multi-player VR apps is that some
foreground interactions are updated according to inputs (e.g., pose
or controller changes) from other players. In our future work, we
plan to extend the split renderer of Furion to support multiple
players by addressing the higher demand on network bandwidth
and latency.
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Figure 12: Resource usage of Furion over time. During the experiment, the CPU frequency of all four cores is capped by the
default CPU governor of Pixel at 1.44GHz. The thermal limit on Pixel is 58 Celsius.

Applicability to non-VR apps. Finally, the local-remote coop-
erative rendering architecture of Furion can be applied to non-VR
mobile apps such as 3D games which similarly contain foreground
interactions and continuously changing background environment
to enhance their responsiveness and visual quality and reduce their
battery drain.

11 RELATEDWORK
We discuss closely related work in several areas.
Mobile virtual reality: Several recentwork studied understand-

ing and improving the performance on current VR systems. Chang
et al. [32] experimentally quantified the timing and positioning
accuracy of existing VR head-mounted hardware. To enable high-
quality VR on mobile devices, Flashback [31] pre-renders all possi-
ble views for different positions and orientations and stores them
on a local cache. At runtime, it fetches frames on-demand from
the cache according to current orientation and position. Flashback
has two limitations: (1) Since all frames are pre-rendered, it does
not support interactions which update animation/behavior based
on user actions; (2) Pre-caching all possible views locally incurs
overwhelming storage overhead (e.g., 50GB for one app) on the
phone. More recently, MoVR [28, 29] tries to cut the cord in high-
quality VR by using mmWave technology to enable multi-Gbps
wireless communication between VR headsets and the server, but
it relies on specialized hardware support not present in current VR
headsets or smartphones. In early 2017, Qualcomm introduced the
newest premium-tier mobile platform Snapdragon 835, together
with a new virtual reality development kit (VRDK) [19] which is
designed to meet the demanding requirements of mobile VR and
expected to be available in Q2 2017. Such hardware enhancement
complements our work.

Cloud offloading and cloud gaming: The mobile computing
community has a long history of leveraging cloud offloading to sup-
plement the capabilities of resource-constrained mobile handsets
(e.g., [35, 36, 40, 42, 47, 48]). However, these works focus on general
computation workloads and cannot meet the strict latency require-
ment specific to VR systems. Similarly, several recent studies focus
on real-time rendering/cloud gaming for mobile devices [37, 43, 52–
56, 60]. Again, the latency requirement of VR systems (e.g., un-
der 25ms) is much more stringent than computer games (e.g., 100-
200ms [54]) due to the near-eye setting.

Graphics and video processing: The graphics and video com-
munity has also studied efficient rendering on resource-constrained
devices. For example, Image-Based Rendering (IBR) [45, 51] is a

well studied technology that renders new frames based on a previ-
ous image and extra information (e.g., a new angle). More recently,
the authors in [51] propose a new IBR algorithm to mask the la-
tency of the rendering task while providing the client with coverage
for filling disocclusion holes. However, IBR-like methods do not
support well dynamic objects (e.g., interactions that change due
to user actions) which may lead to visual artifacts. Parallel codec
for traditional video playback has been studied in recent years
[30, 33, 34]. Furion makes a special optimization by modifying
the codec scheme to support direct encoding/decoding. In addition,
several previous studies leverage the viewpoint-adaptive mecha-
nism [14, 38, 49, 50, 57], which reduces the resolution for the pixels
outside the field of view (FOV) to cut down the bitrate of the stream.
Similarly, foveated rendering leverages eye-tracking to cut down
resolution outside the eye gaze [41, 58, 61]. These approaches do
not perform well when the user quickly and randomly turns the
headset and changes the FOV.

12 CONCLUSION
We presented a quantitative, performance-driven design study

that shows (1) the QoE achievable for high-quality VR apps on
today’s mobile hardware and wireless networking is about 10X
away from the acceptable QoE; (2) waiting for future mobile hard-
ware or next-generation wireless networks (e.g., 5G) is unlikely to
help. Guided by the quantitative, performance-driven design study,
we developed Furion, a VR framework that enables high-quality,
immersive mobile VR on today’s mobile devices and wireless net-
works. Furion employs a split renderer architecture running on
both the phone and the server to exploit a key insight about the
high-quality VR workload that foreground interactions and back-
ground environment have contrasting predictability and rendering
workload. We implemented Furion on top of Unity and Google
Daydream and our evaluation shows it can support high-quality
VR apps on today’s smartphones over WiFi, with 60 FPS and under
14ms, 1ms, and 12ms responsiveness to controller, rotation, and
movement interactions, respectively.
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